
IN4MATX 133: User Interface Software

Lecture:
Hybrid and Native 
Architectures

1



Today’s goals

• Differentiate approaches to developing mobile interfaces

• Describe advantages and disadvantages of developing native, hybrid,
and web applications

• Explain which approach Ionic takes to app development

2

By the end of today, you should be able to…



Mobile-first design

• Plan your design for mobile

• Then make your app better
with more real estate

• Add more features

• Make existing features
easier to navigate

• A lot of businesses make
mobile-friendly websites before 
making dedicated apps

3



Why might a business
want a mobile app
over a mobile website?

4



There are a variety of ways
to build mobile apps

5



Mobile development methods

• Native

• WebView

• Hybrid

• Responsive

• Progressive Web App (PWA)

• https://kevinbasset.medium.com/why-havent-pwas-killed-native-apps-yet-
29beca4425fa

6



Native apps

• An app designed to work on a specific piece of hardware

• Usually built with tools created by the hardware or platform manufacturer

• Android Studio for Android, in Java

• Xcode for iOS, in Swift or Objective-C

7



Native apps

• As we think of them today,
native apps started
with the first iPhone

• Released a development platform 
alongside the hardware

8



Native apps

• iOS development languages:

• Objective-C

• Cocoa Touch

• Swift

• These languages were either 
developed by or pretty much
only used by Apple

• Developer lock-in is a…
Disadvantage? Advantage? Both?

9



Native apps

• iOS development tools:

• Xcode

• iOS Source Development Kit (SDK)

• SDK provides access to phone’s 
storage, camera, sensors, etc.

10



Native apps

• Android development languages:

• Primarily Java

• C and C++ via Android Native 
Development Kit (NDK)

• Align more closely with languages 
used in other contexts

• Is this an advantage? A 
disadvantage?

11



Native apps

• Android development tools:

• Android Studio

• Android Source Development Kit 
(SDK)

• Various IDEs like Eclipse or 
NetBeans

12



Native apps

• Platform-specific codebases

• Android is in Java,
iOS is in Objective-C or Swift

• Both use different libraries
to communicate with the hardware

• Usually require starting to code 
from scratch

13



What if we already made a website
for our app? Or have some other 
existing codebase?

14



What if we want to share code across 
phone platforms?

15



Solution: hybrid apps

16



Hybrid apps

• “Use a common code base to deploy native-like apps
on a wide range of platforms”

• Two primary approaches:

• WebView app

• Compiled hybrid app

17



WebView app

• Run a webpage written in HTML/CSS/JavaScript,
on the phone’s internal browser

• Load that browser in a lightweight native app

• Ideally, expose some native APIs to the browser

18



WebView app

• Essentially, the app is just a website

• Allows the same or similar code to be used across an app and a website

19



WebView app frameworks

• Ionic

• jQuery mobile

• NativeScript

• These frameworks use web 
technologies (HTML, CSS, 
TypeScript, JavaScript)
rather than platform-specific 
technologies

20



WebView app frameworks

• WebView apps are just websites

• What do these frameworks provide?

• Common mobile interface elements like sliders and buttons (more on that next 
week)

• The native app for running the website

• Some APIs for communicating with platform SDKs

21



Compiled hybrid apps

• “Write code in one language, such as C# or JavaScript, and compile it to 
native code supported by each platform”

• Result: a native app for each platform

• Challenge: less freedom in development

22



Compiled hybrid app frameworks

• Xamarin

• C#

• Unity

• C# of JavaScript

• React Native

• JavaScript

23



Unity

• Leading game development 
platform

• Supports consoles, web, and mobile

• Will need to import
or use platform-specific SDKs

24



React Native

• Uses React, a web framework 
similar to Angular

• Compiles a webpage to a native 
app

25



Performance is just one factor.
How do we choose
a development approach?

26



Business considerations

• Development time

• Development cost

• Maintenance concerns

• Available infrastructure

27



UX and design considerations

• Consistency with platform

• Device capabilities

• Interaction models supported

• Performance and usability

28



Technical considerations

• Programming languages

• Integration with device

• Performance

• Upkeep and maintenance

• Flexibility

• Compatibility

29



Pros and cons of each option

30



Strengths of hybrid apps

• Can share a codebase between web and mobile

• Can save time and effort (sometimes)

• Easily design for various form factors

• Access to some device capabilities

31



Weaknesses of hybrid apps

• Performance issues

• Inconsistency with platform

• Limited access to device capabilities

32



Strengths of native apps

• Consistent experience with platform

• Leverages full device capabilities

• Uses native UI elements

33



Weaknesses of native apps

• Need to support separate development for each platform

• Cost of app development and maintenance

• Need to learn/manage multiple programming languages

• Need to manage multiple sets of tools

34



• Native apps are great when 
performance and consistency with 
the platform are major concerns

Hybrid apps vs. native apps

• Hybrid apps are great
when time or money is a concern
and you need to deploy
on multiple platforms

35



• Native apps

• Games

• Content-heavy apps

• Uses a lot of device resources

• Needs specific OS capabilities

Hybrid apps vs. native apps

• Hybrid apps

• News sites

• Informational apps

• Product showcase

• Seasonal/one-off

36



Progressive Web Apps (PWAs)

• Intended to “fill the gap” between native apps and 
web apps

• Really just a website that you can “install” on a 
phone 

• Supported by major browsers & phones

• No associated framework, just a few files to add

37

https://en.wikipedia.org/wiki/Progressive_web_application



Progressive Web Apps (PWAs)

• Add some information to an app manifest 
(manifest.json)

• Desired device orientation, URL to open, links to icons

• Relies on everything your browser relies on for 
other features

• Web Storage for saving values

• https://en.wikipedia.org/wiki/Web_storage

38

https://en.wikipedia.org/wiki/Progressive_web_application



Progressive Web Apps (PWAs)

• A good PWA should:

• Start fast, stay fast

• Work in any browser

• Be responsive to any screen size

• Provide a custom offline page

• Be installable

39

https://web.dev/pwa-checklist/



Progressive Web Apps (PWAs)

• Main advantages

• They require almost no new code or libraries, making them ideal for having a 
shared codebase with your website and implementing progressive enhancement

• Most apps don’t need native features

• Main disadvantage

• They don’t show up in managed app stores like Apple’s App Store or Google Play, 
so not discoverable through traditional means

• To learn more visit (great resource for getting started):

• https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

40



One Hybrid (WebView) framework: 
Ionic

41



Ionic

• WebView app framework

• Launched in 2013

• Interface implemented in Angular

• Recently added support for React and 
Vue

• Capacitor is the recommended hybrid 
app runtime for ionic, replacing 
Cordova

• Apache Cordova is still supported, but 
not recommended for new projects

42

https://ionicframework.com/resources/articles/capacitor-vs-cordova-modern-hybrid-app-development



Capacitor

• It provides the native app which 
opens the WebView

• Supports PWAs

• Also provides plugins for 
connecting to device resources

• Hundreds of plugins

• Official

• Community

43

https://capacitorjs.com/docs/apis

https://github.com/capacitor-community/



Ionic Native

• Ionic Native is a wrapper to bring 
plugins to ionic

• Ionic Native plugins are imported
as services

• Can wrap Cordova plugins as well

• Capacitor has retro-compatibility 
with most Cordova plugins

44

https://ionicframework.com/docs/native/



Ionic Native

• Geolocation

• Bluetooth

• Camera

• Health

• Gyroscope

• Pedometer

45

Some example plugins

https://ionicframework.com/docs/native/



Ionic Native

• Facebook

• LinkedIn

• WeChat

• Apple Pay

• Google Maps

• Youtube

46

Some example plugins

https://ionicframework.com/docs/native/



Ionic Dev

• Provides a WebView to open up
Ionic apps

• Lets you test your Ionic app
in abrowser

47

https://ionicframework.com/docs/cli/commands/serve



Deploying Ionic apps

• Involves packaging up an app and “signing” it as a developer

• For Android, this requires installing Android Studio

• For iOS, this requires installing Xcode and getting a developer account

• Can then “deploy” the app to the app store

• The iOS app store includes features for “beta” deployment
with a small group of developers

• This process is often a pain

48

https://ionicframework.com/docs/building/ios or https://ionicframework.com/docs/building/android



Ionic iOS and Android Deployment

• “The key mantra of Capacitor is that developers should embrace native 
tools like Android Studio and Xcode”

• Pre-builds projects to be used in Xcode and Android Studio

• Lets you test your Ionic app on an actual device or emulators

• Emulators have limited use of plugins

49

https://ionicframework.com/docs/developing/starting



What does Ionic add over Angular?

50



Ionic components

• Ionic provides Angular-style 
components for a lot of interface 
elements common in mobile 
interfaces

• Lists, buttons, sliders, tabs,
modal dialogs, search bars, much 
more

• These are the focus of next lecture

51

https://ionicframework.com/docs/components/



Today’s goals

• Differentiate approaches to developing mobile interfaces

• Describe advantages and disadvantages of developing native, hybrid,
and web applications

• Explain which approach Ionic takes to app development

52

By the end of today, you should be able to…


