
IN4MATX 133: User Interface Software

Lecture:
Mobile Design, Device 
Resources & Sensors, Sass

1



Today’s goals

• Follow high-level guidelines for developing mobile interfaces

• Find and interpret platform-specific human interface guidelines

• Deploy an Ionic project to test an app on a mobile device

• Access device resources using a Capacitor Plugin

• Describe some of the sensors on modern smartphones

• Describe some ways in which sensors can be used

2

By the end of today, you should be able to…



What makes a good user experience?

• It’s not just the UI

• The experience begins with the first time you launch an app or go to a website

• There are several components here

• Initial impression (boot up to app start)

• User interface

• Visual design

• Information presentation

• The physical device and how it is used with the app

3



A few principles of mobile design

• A useful initial view

• The “uh-oh” button

• Error prevention

• Follow platform conventions

4



A useful initial view

• Give users clear calls to action

• Put useful content
on the homepage

• Pinterest’s images

• Put more than navigation buttons

• Make it easy to get back
to the homepage

• Bottom navbar, side navigation menu

5

Pinterest Anxiety
management
app



The “uh-oh” button

• Functions and buttons are often 
pressed by mistake

• Undo and redo should be easy

• Gmail: “undo send”

• Navigating back a page should
be easy

• Breadcrumbs or back buttons (top 
left)

6

Gmail



Error prevention

• Providing input with small devices
is difficult

• Add in as much assistance
as possible to aid with input

• Add input checks

• How many digits are in that phone 
number? Credit card number?

• Use appropriate widgets

• Date/time spinner

• Sliders

7



Follow platform conventions

• Users should not have to wonder 
whether different words,
situations, icons, or actions
mean the same thing

• Users should not have to 
remember app-specific navigation

8



iOS and Android platform 
conventions: Human Interface 
Guidelines

9



Human interface guidelines

• Created by web/mobile platform developers (Google, Apple)

• Key features:

• Define rules for visual design and style

• Specify interactions

• Establish layout techniques

• Provide consistency across the platform

10



Human interface guidelines

• HIGs are recommendations; you can choose to ignore them

• The goal is to create an optimal experience for a device or platform

• These guidelines most often follow best practices

11



iOS Human Interface Guidelines

• Content over UI

• Use the whole screen

• Single / simple colors

• Borderless buttons and widgets

12



Navigation

• Should be “natural”

• Use a navigation bar to traverse
a hierarchy of data

• Use a tab bar for several
peer categories

• Use a new page when that page
is an instance of an item
for another page

13

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/navigation/



Modals

• Grab control of the experience
until they are dismissed

• Meant to grab attention
for doing one small, specific task

• Make sure the user can back out

• Respect notification wishes

• Use sparingly

14

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/modality/



Interactivity

• Use a key color to denote 
interactive elements

• Denote “active” and “inactive” 
components differently

• Be aware of colorblindness

15



Branding

• It’s important to be distinctive…

• But be careful not to pull a user out 
of the iOS experience

• Your app does not have to look like 
a default app, but…

16



Color and Typography

• Colors are great for grabbing 
attention, but can be overused

• Use complementary colors

• Palette definers like paletton.com

• Use a single typeface (font),
if possible

• Built-in fonts are just fine

• Use font size, and color and
weight (bold) to highlight information

17

https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/color/



Icons

• A good icon is important

• Keep background simple

• Only use words if they are 
essential or part of a logo

• Leave your icon out of the interface

• When appropriate, use
system icons in the interface itself

• Use as intended

18

https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/



Google Material Design

• Philosophy: interface should look like layers on a sheet of paper

• Have 3D depth and motion

• Follows many of the same patterns as iOS design in terms of interaction

• Limited use of modals

• Use color to emphasize content

• Be subtle with branding

• But, there are differences – study guidelines before deployment!

19

https://material.io/design/



Capacitor Plugins

20



Ionic components

• Ionic provides Angular-style 
components for a lot of interface 
elements common in mobile 
interfaces

• Lists, buttons, sliders, tabs,
modal dialogs, search bars, much 
more

21

https://ionicframework.com/docs/components/



Ionic + Capacitor

• Capacitor Provides libraries for 
connecting to device resources in 
the form of plugins

• Possible to use Capacitor 
alongside ionic native wrapping 
Cordova plugins 

• hundreds of plugins

• official or community 

• some with known issues 

22

https://ionicframework.com/docs/native/



Capacitor Setup

• Adding capacitor to an existing Ionic project:
> cd [project folder]

> ionic integrations enable capacitor

• Capacitor builds native “projects” based on web build (folder www)
> ionic build

• After Ionic builds, use Capacitor to create native projects
> ionic capacitor add [android or ios]

• After each significant code change, need to update native projects:
> ionic capacitor copy [android or ios]

23



Ionic and Capacitor Deployment

• The sync command will both copy and update plugins and dependencies 
for both Android and iOS. Also, “cap” can be used instead of “capacitor”:
> ionic cap sync

• Commands to open native projects using native IDEs
> ionic cap open [android or ios]

• Live reload keeps native IDE in sync with ionic project and updates 
deployed emulators:
> ionic cap run [android or ios] -l --external

24



Platform

• Ionic has an injectible service for detecting what platform(s) the app is 
running on

• Platforms are not mutually exclusive

• Mobile, iOS, Android

• iPad, tablet

25

https://ionicframework.com/docs/angular/platform



Capacitor Plugins

• Some (few) are maintained officially

• Others are maintained by the community

• As a result, quality varies immensely

• Features may not work as expected

• Plugins are abstractions for native resources, so be aware of how each is 
used on either iOS or Android

26



Local Storage: Preferences

• Preferences

• Simple key/value storage for temporary data

• Should use for caching, not for long term storage

• User can delete

• Installation

• > npm install @capacitor/preferences

27

https://capacitorjs.com/docs/next/apis/preferences



Local Storage: Preferences

• Add to a component

28

import { Preferences } from '@capacitor/preferences’;

Preferences.get({key:’keyName’}).then((data) => {
console.log(data.value);

});

Preferences.set({key:’keyName’, value:’value’}).then(() => {
console.log(“set value”);

});



Local Storage: Ionic Storage

• Ionic Storage

• Storage abstraction layer for permanent data

• Key/value storage or more complex (e.g., SQLite)

• Defaults to IndexedDB and localstorage, depending on availability

• Both are nosql style databases

• Installation

• > npm install @ionic/storage-angular

29

https://github.com/ionic-team/ionic-storage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API



Local Storage: Ionic Storage

• Add to a component

30

import { Storage } from ‘@ionic/storage-angular’;

//in class

this._storage.get({key:’keyName’}).then((data) => {
console.log(data.value);

});

this._storage.set({key:’keyName’, value:’value’}).then(() => {
console.log(“set value”);

});



Three Official Capacitor Plugins

• Camera

• Local Notification

• Sharing

There are others, but we will just cover these three.

31



Taking a Picture

• To use webcam, install PWA lib:
> npm install @ionic/pwa-elements

• To use webcam, install Camera lib:
> npm install @ionic/camera

• Import PWA lib in main.ts

32

https://capacitorjs.com/docs/web/pwa-elements

import { defineCustomElements } from '@ionic/pwa-elements/loader';

// Call the element loader after the platform has been bootstrapped
defineCustomElements(window)



Taking a Picture

• Import plugins from Capacitor to your desired component

33

import {
CameraResultType,
Camera,

} from '@capacitor/camera';



Taking a Picture

34

import { Camera, CameraResultType } from '@capacitor/camera’;

async takePicture() {
const image = await Camera.getPhoto({
quality: 90,
allowEditing: true,
resultType: CameraResultType.Uri

});
// image.webPath will contain a path that can be set as an image src.
// You can access the original file using image.path, which can be
// passed to the Filesystem API to read the raw data of the image,
// if desired (or pass resultType: CameraResultType.Base64 to getPhoto)
var imageUrl = image.webPath;
// Can be set to the src of an image now
imageElement.src = imageUrl;

}

https://capacitorjs.com/docs/apis/camera



Local Notification

• Goal: send a notification to the phone

• Could be used to remind someone to journal their sleepiness, for example

• To use, install with:

• > npm install @capacitor/local-notifications

35

https://capacitorjs.com/docs/apis/local-notifications



Local Notification

• Import Plugin in a service or component

36

https://capacitorjs.com/docs/apis/local-notifications

• Prompt user to authorize notifications:

import {LocalNotifications } from '@capacitor/local-notifications';

await LocalNotifications.requestPermissions();



Local Notification

37
https://capacitorjs.com/docs/apis/local-notifications

const notifs = await LocalNotifications.schedule({
notifications: [
{
title: "Title",
body: "Body",
id: 1,
schedule: { at: new Date(Date.now() + 1000 * 5) 

},
sound: null,
attachments: null,
actionTypeId: "",
extra: null

}
]

});
console.log('scheduled notifications', notifs)

Can schedule 
for the future



Sharing

• Goal: export data from your app to a social app on the device

• Could be used to share photos to Facebook

• Could be used to share text in a text message

• Uses Web Share API

38

https://capacitorjs.com/docs/apis/share

https://web.dev/web-share/



Sharing

• Support is “nuanced”

• Use feature detection rather than assume a particular method is supported

• Check out the compatibility list here:

• https://developer.mozilla.org/en-
US/docs/Web/API/Navigator/share#browser_compatibility

39

https://capacitorjs.com/docs/apis/share

https://web.dev/web-share/



Sharing

• Import Plugin

40

• Call Share.share() method with content to be shared:

import { Share } from '@capacitor/share';

let shareRet = await Share.share({
title: 'See cool stuff',
text: 'Really awesome thing you need to see right meow',
url: 'http://ionicframework.com/',
dialogTitle: 'Share with buddies'

})

https://capacitorjs.com/docs/apis/share

https://web.dev/web-share/



Demo

41



Plugin Issues

• There are many issues with Capacitor plugins (see link below)

• Only a limited set of functionalities are enabled

• Plugins may be unreliable

42

https://github.com/ionic-team/capacitor/issues



Premier Plugins

• The company behind Ionic 
maintains a set of plugins

• Ionic’s team is behind Capacitor

• They are presumably more 
reliable, but this comes at a cost

43

https://capacitorjs.com/enterprise



Appropriating Sensors in Research

44



Appropriating Sensors in Research

• Lung function (asthma/blockage) 
via a microphone

45

SpiroSmart

Eric C. Larson, Mayank Goel, Gaetano Boriello, Sonya Heltshe, Margaret Rosenfeld, Shwetak N. Patel.

SpiroSmart: Using a Microphone to Measure Lung Function on a Mobile Phone. UbiComp 2012

https://dl.acm.org/citation.cfm?id=2370261



Appropriating Sensors in Research

• Jaundice in newborns via camera
and a calibration card

46

BiliCam

Lilian de Greef, Mayank Goel, Min Joon Seo, Eric C. Larson, James W. Stout, James A. Taylor, Shwetak N. Patel.

BiliCam: Using Mobile Phones to Monitor Newborn Jaundice. UbiComp 2014

https://dl.acm.org/citation.cfm?id=2632076



Appropriating Sensors in Research

• Medical devices are expensive and inaccessible

• Phones are widely available

• ~40% of the world owns a smartphone today

• Can enable these tests in lower-resource countries or counties

• Can enable at-home tests and continuous monitoring

• Regulation is a separate and important issue

47

Why?



Today’s goals

• Follow high-level guidelines for developing mobile interfaces

• Find and interpret platform-specific human interface guidelines

• Deploy an Ionic project to test an app on a mobile device

• Access device resources using a Capacitor Plugin

• Describe some of the sensors on modern smartphones

• Describe some ways in which sensors can be used

48

By the end of today, you should be able to…


