
IN4MATX 133: User Interface Software

1

Lecture:
AJAX, Fetch, & Promises

Advanced JavaScript Quiz and Demo

2

Goals for this Lecture

• Explain how programs access web resources
and common ways they respond

• Implement a fetch request to get a resource from a web API
• Use promises to make an asynchronous request
• Use async/await to make an asynchronous request

3

By the end of this lecture, you should be able to…

Web APIs
• Many web services and data sources allow you

to use HTTP (web) requests to access their data
• This is done by providing a web API.
• https://developer.twitter.com/

4

Web APIs

• The interface we can use to interact with an application through programming
• An interface is just a defined set of functions
function doSomething(param1, param2) {
//...
}

5

Application Programming Interface

An interface

Web APIs

6

https://www.programmableweb.com/

Using the internet

7

Web server

Response

Protocol
(how to handle info)

Host
(who has info)

Resource
(what info you want)

“Hey Wikipedia, I’d like to see the page for the school of ICS!” Request

Your browser

URI

• All URLs are URIs, but URLs also specify “access mechanism”

• http://, file://

• URIs will return a resource

• Could be a webpage, image file etc.

• Could also just be data

8

Uniform Resource Indicator

URI

• http://www.domain.com/users => returns a list of users

• The list of users is the resource

• Can have sub-resources
• http://www.domain.com/users/shawna

• Returns a specific user

9

Uniform Resource Indicator

URI format

• Base URI:

• How every API request for that API starts

• https://api.twitter.com/

• Endpoint

• Specific resources which can be accessed via that api

• 1.1/search/tweets.json

• 1.1/status/filter.json

10
https://developer.twitter.com/en/products/tweets.html

Endpoints often contain an API version number

URI queries

• Key/value pairs which follow the URI

• Parameters for the resource, may specify exactly what to return
or what format it should be in

• ?key=value&key=value

• https://api.twitter.com/1.1/search/tweets.json?q=UCI&la
ng=en

11
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets.html

“query”, in Twitter this means
what text or hashtag to search for

language=english

HTTP verbs

• HTTP requests include a target resource and a verb (method) specifying what to
do with it

• GET: return a representation of the current state of the resource

• POST: add a new resource (e.g., a record, an entry)

• PUT: update an existing resource to a new state

• PATCH: update a portion of the resource’s state

• DELETE: remove the resource

• OPTIONS: return a set of methods that can be performed on the resource

12

HTTP responses

• Responses will include a status code (whether it worked as expected)
and a body (the actual response)

• 200: OK

• 201: Created (for POST)

• 400: Bad request (something is wrong with your URI)

• 403: Forbidden (some access or authentication issue)

• 404: Not found (resource does not exist)

• 500: Internal server error (generic server-side error)

13
https://www.restapitutorial.com/httpstatuscodes.html

Putting it all together

• HTTP GET
https://api.twitter.com/1.1/search/tweets.json?q=UCI&la
ng=en

• Use the “get” verb to access English-language tweets which mention UCI

• We expect/hope for status code 200 (OK)

• Then we access the body

14

Escaping characters

• Some characters, like the hash (#) are reserved in URLs

• Linking to IDs within pages

• We need to encode the character to search for a hashtag on Twitter
• HTTP GET
https://api.twitter.com/1.1/search/tweets.json?q=%23UCI
&lang=en

15
https://www.w3schools.com/tags/ref_urlencode.asp

So how do we make a web request?

16

17

Asynchronous JavaScript and XML

XML

• A generalized syntax for semantically defining structured content
• HTML is XML with defined tags
<person>

<firstName>Alice</firstName>
<lastName>Smith</lastName>
<favorites>

<music>jazz</music>
<food>pizza</food>

</favorites>
</person>

18

Extensible Markup Language

Plain text

Belgian Waffles
"Two of our famous Belgian Waffles with plenty of real maple syrup"
$5.95
650 calories

Strawberry Belgian Waffles
"Light Belgian waffles covered with strawberries and whipped cream"
$7.95
900 calories

Berry-Berry Belgian Waffles
"Light Belgian waffles covered with an assortment of fresh berries and whipped cream"
$8.95
900 calories

French Toast
"Thick slices made from our homemade sourdough bread"
$4.50
600 calories

Homestyle Breakfast
"Two eggs, bacon or sausage, toast, and our ever-popular hash browns"
$6.95
950 calories

19

<breakfast_menu>
<food>

<name>Belgian Waffles</name>
<price>$5.95</price>
<description>
Two of our famous Belgian Waffles with plenty of real maple syrup

</description>
<calories>650</calories>

</food>
<food>

<name>Strawberry Belgian Waffles</name>
<price>$7.95</price>
<description>
Light Belgian waffles covered with strawberries and whipped cream

</description>
<calories>900</calories>

</food>
<food>

<name>Berry-Berry Belgian Waffles</name>
<price>$8.95</price>
<description>
Light Belgian waffles covered with an assortment of fresh berries and

whipped cream
</description>
<calories>900</calories>

</food>
<food>

<name>French Toast</name>
<price>$4.50</price>
<description>
Thick slices made from our homemade sourdough bread

</description>
<calories>600</calories>

</food>
<food>

<name>Homestyle Breakfast</name>
<price>$6.95</price>
<description>
Two eggs, bacon or sausage, toast, and our ever-popular hash browns

</description>
<calories>950</calories>

</food>
</breakfast_menu>

XML

XML
<breakfast_menu>

<food>
<name>Belgian Waffles</name>
<price>$5.95</price>
<description>

Two of our famous Belgian Waffles with plenty of real maple syrup
</description>
<calories>650</calories>

</food>
<food>

<name>Strawberry Belgian Waffles</name>
<price>$7.95</price>
<description>

Light Belgian waffles covered with strawberries and whipped cream
</description>
<calories>900</calories>

</food>
<food>

<name>Berry-Berry Belgian Waffles</name>
<price>$8.95</price>
<description>

Light Belgian waffles covered with an assortment of fresh berries and
whipped cream

</description>
<calories>900</calories>

</food>
<food>

<name>French Toast</name>
<price>$4.50</price>
<description>

Thick slices made from our homemade sourdough bread
</description>
<calories>600</calories>

</food>
<food>

<name>Homestyle Breakfast</name>
<price>$6.95</price>
<description>

Two eggs, bacon or sausage, toast, and our ever-popular hash browns
</description>
<calories>950</calories>

</food>
</breakfast_menu>

20

{
"breakfast_menu": {

"food": [
{
"name": "Belgian Waffles",
"price": "$5.95",
"description": "Two of our famous Belgian Waffles with plenty of real maple

syrup",
"calories": "650"

},
{
"name": "Strawberry Belgian Waffles",
"price": "$7.95",
"description": "Light Belgian waffles covered with strawberries and whipped

cream",
"calories": "900"

},
{
"name": "Berry-Berry Belgian Waffles",
"price": "$8.95",
"description": "Light Belgian waffles covered with an assortment of fresh

berries and whipped cream",
"calories": "900"

},
{
"name": "French Toast",
"price": "$4.50",
"description": "Thick slices made from our homemade sourdough bread",
"calories": "600"

},
{
"name": "Homestyle Breakfast",
"price": "$6.95",
"description": "Two eggs, bacon or sausage, toast, and our ever-popular hash

browns",
"calories": "950"

}
]

}
}

JSON

XML vs. JSON

• XML and JSON represent the same data
• JSON is more concise

• Less data to move around on the web

• JSON is easier to read

• Close tags in XML are redundant

• JSON has taken over as the typical format of web requests

21

Asynchronous JavaScript and XML

22

JSON

Sending an AJAX request

23

XMLHttpRequest

• AJAX requests are built into a browser-provided object called XMLHTTPRequest
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (xhttp.readyState == 4 && xhttp.status == 200) {
// Action to be performed when the document is read;
var xml = xhttp.responseXML;

var movie = xml.getElementsByTagName("track");
//...

}
};
xhttp.open("GET", "filename", true);
xhttp.send();

24

XMLHttpRequest

• AJAX requests are built into a browser-provided object called XMLHTTPRequest
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (xhttp.readyState == 4 && xhttp.status == 200) {
// Action to be performed when the document is read;
var xml = xhttp.responseXML;

var movie = xml.getElementsByTagName("track");
//...

}
};
xhttp.open("GET", "filename", true);
xhttp.send();

25

Fetch
• A new-ish, modern method for submitting XMLHttpRequests
• Included in most browsers (but not IE)

26

https://caniuse.com/fetch

Using fetch

• fetch(‘some-url’) defaults to a GET request
• fetch can optionally take a second options argument (as a dictionary)

• method: what method to use (e.g., POST, PUT, DELETE)

• headers: specify content type format, etc. (more on headers in the next week)

• body: what you want to send for a POST/PUT request

27
https://css-tricks.com/using-fetch/

Using fetch

• For a GET request
fetch('some-url');

• For a POST request
fetch('some-url', {
method:'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify(data-to-send)

});

28
https://css-tricks.com/using-fetch/

Same-origin policy

• Many browsers will not permit AJAX requests to a different server.
This helps prevent malicious scripts from accessing data in the DOM

• A non-browser proxy server running locally can communicate with a different server

• The browser can communicate with the proxy server

29
https://en.wikipedia.org/wiki/Same-origin_policy

Same-origin policy
• Two browser tabs: A bank app open in one,

an evil app in the other

• Both run JavaScript scripts written by their source

• The origin is what HTML page opened the JavaScript file

• So each tab is a separate origin

• Without the same-origin policy, the evil app could read, edit,
etc. your bank information

• Different tabs, but both running with the same JavaScript engine

30
https://security.stackexchange.com/questions/8264/why-is-the-same-origin-policy-so-important

Same-origin policy
• So instead, the bank app can only talk to the bank server, and

the evil app can only talk to the evil server
• Two exceptions:

• An app can always communicate with other apps
in the same domain (e.g., localhost apps can communicate
with any other localhost apps)

• A server can designate that it will accept connections from sources
with a particular origin (or any origin)

• You can disable this in your browser, but probably shouldn’t

31
https://security.stackexchange.com/questions/8264/why-is-the-same-origin-policy-so-important

Servers on localhost

• Localhost: “this computer”

32

Twitter proxy: localhost:7890

Browser implements same-origin
policy to protect the other data you have open in the
browser

No same-origin policy restrictions, can communicate with
Twitter

Live server: localhost:8080

Same domain (localhost), so they can
communicate No communication restrictions

A local web server

• Install live-server package globally

• npm install -g live-server

• Running it

• cd path/to/project

• live-server .

• Will open up your webpage at http://localhost:8080

33

Asynchronous JavaScript and XML

34

JSON

Asynchronous requests

• Ajax requests are asynchronous, so they happen simultaneously
with the rest of the code

• After the request is sent, the next line of code is executed
without waiting for the request to finish

console.log('About to send request');

//send request for data to the url
fetch(url);

console.log('Sent request’);

35

Does NOT return the data

(1)

(2)

(3)

(4) Data is actually received sometime later!

Asynchronous requests

• It’s uncertain how long it’ll take the request to complete
• Handling requests asynchronously allows a person

to continue interacting with your page

• The request is not blocking their interface interactions

• It’s a bad experience when a person tries to navigate your webpage, but can’t

36

Promises

• Because fetch() is asynchronous, the method returns a Promise
• Promises act as a “placeholder” for the data

that will eventually be received from the AJAX request
• A promise will exist in one of three states:

• Pending – initial state

• Fulfilled – operation successfully completed

• Rejected – operation failed

//fetch() returns a Promise
var thePromise = fetch(url);

37

Promises
• We use the .then() method to specify a callback function to be executed when the promise is fulfilled (when

the asynchronous request is finished)

//what to do when we get the response
function successCallback(response) {

console.log(response);
}

//when fulfilled, execute the callback function
//(which will be passed the fetched data)
var promise = fetch(url);
promise.then(successCallback, rejectCallback);

//more common to use anonymous variables/callbacks:
fetch(url).then(function(response) {

console.log(response);
});

38

Optional parameter

Callback will be passed the request response

fetch() responses

• The parameter passed to the .then() callback is the response,
not the data we’re looking for

• The fetch() API provides a method .json() that we can use
to extract the data from the response

• But this method is also asynchronous and returns a promise!
fetch(url).then(function(response) {

var newPromise = response.json();

//... what now?
});

39

Another promise

Not the data

Chaining promises
• The .then() method itself returns a Promise containing the value (data) returned by the callback method

• This allows you to chain callback functions together,
doing one after another (but after the Promise is fulfilled)

function makeString(data) {
return data.join(", "); //a value to put in Promise

}

function makeUpper(string) {
return string.toUpperCase(); //a value to put in Promise

}

var promiseA = getData();
var promiseB = promiseA.then(makeString);
var promiseC = promiseB.then(makeUpper);
promiseC.then(function(data) {

console.log(data);
};

40

When completed, promiseA => json data
promiseB=> comma-separated string
promiseC => uppercase string

Data is an uppercase,
comma-separated string

Chaining promises
• The .then() method itself returns a Promise containing the value (data) returned by the callback method

• This allows you to chain callback functions together,
doing one after another (but after the Promise is fulfilled)

function makeString(data) {
return data.join(", "); //a value to put in Promise

}

function makeUpper(string) {
return string.toUpperCase(); //a value to put in Promise

}

//more common to use anonymous variables and chain functions
getData()

.then(makeString)

.then(makeUpper)

.then(function(d) { console.log(d); };

41

Multiple promises (sequential)

• The .then() function will also handle promises returned by previous callbacks, allowing for
sequential async calls

getData(fooSrc)
.then(function(fooData){

var modifiedFoo = modify(fooData)
return modifiedFoo;

})
.then(function(modifiedFoo){

//do something with modifiedFoo
var barPromise = getData(barSrc);
return barPromise;

})
.then(function(barData){

//do something with barData
})

42

Extracting fetch() data

• To actually download JSON data…
fetch(url)

.then(function(response) {
var dataPromise = response.json();
return dataPromise;

})
.then(function(data) {

//do something with data
});

43

Catching errors

• We can use the .catch() function to specify a callback that will occur if the promise is rejected (an
error occurs).

• This method will “catch” errors from all previous .then()s
getData(fooSrc)

.then(firstCallback)

.then(secondCallback)

.catch(function(error) {
//called if EITHER previous callback
//has an error

//param is object representing the error itself
console.log(error.message);

})
.then(thirdCallback) //will only do this if

//no previous errors

44

Multiple promises (concurrent)

• Because Promises are just commands to do something,
we can wait for all of them to be done

var foo = fetch(fooUrl);
var bar = fetch(barUrl);

//a promise for when all commands ready
Promise.all(foo, bar)

.then(function(fooRes, barRes) {
//do something both both responses, e.g.,

return Promise.all(fooRes.json(), barRes.json());

})
.then(function(fooData, barData){

//now have both data sets!
})

45

Promise Demo

46

But wait, there’s more!

47

Async/Await

• Alternative mechanism to Promise/then
• Streamlines the Promise/then approach:

• Improved readability and maintainability

• More straightforward error handling (cleaner use of try/catch)

• Debugging is simplified due to linear code execution

• Linear execution is easier to reason about

• Usage largely depends on type of asynchronous requests that your application
makes, development ecosystem, and organizational preferences

48

Async/Await

• Using async/await, the fetch and data processing occurs in an asynchronous function that will await the
results.

• Applying a try/catch block handles any potential errors that may occur during the fetch operation.

async function getData(){
try {

const response = await fetch(uri);
const data = await response.json();

} catch (error){
//do something with error

}

getData();

49

Async/Await Demo

50

Goals for this Lecture

• Explain how programs access web resources
and common ways they respond

• Implement a fetch request to get a resource from a web API
• Use promises to make an asynchronous request
• Use async/await to make an asynchronous request

5
1

By the end of this lecture, you should be able to…

