
IN4MATX 133: User Interface Software

1

Lecture:
Databases and Local Storage

Goals for today’s lecture

• Differentiate relational from non-relational databases
• Explain the advantages of each style of database
• Use Firebase to implement a non-relational database

2

By the end of this lecture, you should be able to…

Today is a crash course in databases
CS 122A and 122B provide substantially more
depth

3

Data storage

• What happens when we refresh the A4 sleep tracking app?

• We lose all of the data we logged

• This is obviously not ideal

• We have to tell the browser, app, etc. to store it

4

Data storage

• Data can be stored locally on a device

• Android and iOS allow apps to store some data

• Ionic Native provides (good) libraries for using local storage

5

Local Storage

• In Ionic, can store key-value pairs

• Keys must be strings, values can be any type

• This is actually a non-relational database!

• More on this in a few slides

6

https://ionicframework.com/docs/building/storage#ionic-storage

Local Storage
ionic cordova plugin add cordova-sqlite-storage

npm install --save @ionic/storage

• Don’t forget to add it to your module and inject it!

storage.set('name', 'Max');

// Or to get a key/value pair
storage.get('age').then((val) => {

console.log('Your age is', val);
});

7

https://ionicframework.com/docs/building/storage#ionic-storage

Local Storage

8

If we can store data on devices,
why do we need databases?

9

Databases

• Provide reliability

• You can get your data back if your phone dies or you get a new phone

• Provide cross-device support

• Allow you to see and modify the same data across a phone and a desktop,
for example

10

Databases

• Are more than files stored in the cloud

• Can be “queried” efficiently to get subsets of data

• Two main approaches to making databases

• Relational databases: MySQL, Postgres

• Non-relational databases: MongoDB, Firebase

• Transaction: any add/delete/update/etc. made to a database

1
1

Databases

• Everything is organized into tables
• Tables contain columns with predefined names and data types
• Tables “relate” to one another by having overlapping or similar columns

• Minimizes redundancy and keeps order

• Every data entry is a row of a table

12

Relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

13

Relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

14

Relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

CREATE TABLE IF NOT EXISTS tasks (

task_id INT AUTO_INCREMENT,

title VARCHAR(255) NOT NULL,

start_date DATE,

due_date DATE,

status TINYINT NOT NULL,

priority TINYINT NOT NULL,

description TEXT,

PRIMARY KEY (task_id)

) ENGINE=INNODB;

Databases

• Everything is organized into objects
• There are no restrictions on how objects are structured
• Every data entry is an object, or “document”

• Documents may be structured differently from one another

15

Non-relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

16

Non-relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

• There is no well-defined enforced structure
• That said, flatter structures are generally better

17

Non-relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

18

Non-relational databases

https://firebase.google.com/docs/database/ios/structure-data

{
// This is a poorly nested data architecture, because iterating the children
// of the "chats" node to get a list of conversation titles requires
// potentially downloading hundreds of megabytes of messages
"chats": {
"one": {
"title": "Historical Tech Pioneers",
"messages": {
"m1": { "sender": "ghopper", "message": "Relay malfunction found. Cause: moth." },
"m2": { ... },
// a very long list of messages

}
},
"two": { ... }

}
}

{
// Chats contains only meta info about each conversation stored under the chats's unique ID
"chats": {
"one": {
"title": "Historical Tech Pioneers",
"lastMessage": "ghopper: Relay malfunction found. Cause: moth."

},
"two": { ... }

},
// Messages are separate from data we may want to iterate quickly but still easily paginated and queried,
// and organized by chat conversation ID
"messages": {
"one": {
"m1": {
"name": "eclarke",
"message": "The relay seems to be malfunctioning."

},
"m2": { ... }

},
"two": { ... }

}
}

Databases

19

Non-relational databases

https://firebase.google.com/docs/database/ios/structure-data

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

20

Which database structure will be best
for retrieving all first names?

A

B

C

D

E

Relational Non-relational

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

21

Which database structure will be best
for retrieving all first names?

A

B

C

D

E

Relational Non-relational

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

22

Which database structure will be best
for retrieving all phone numbers?

A

B

C

D

E

Relational Non-relational

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

23

Which database structure will be best
for retrieving all phone numbers?

A

B

C

D

E

Relational Non-relational

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

24

Which database structure will be best
for retrieving all data?

A

B

C

D

E

Relational Non-relational

The relational database

The non-relational database

They will be about the same

I’m not sure

[space intentionally left blank]

25

Which database structure will be best
for retrieving all data?

A

B

C

D

E

Relational Non-relational

Databases

• Relational databases support better querying

• Provide languages for querying, such as Structured Query Language (SQL)

• Those languages can be used to ask for specific tables or even join data across tables

• “Give me the first name of every user whose phone number starts with 949”

26

Advantages of relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

• Relational databases are more organized

• Because field types are defined, data reliably follows that structure

• Relational databases are more reliable

• Structure is enforced when new data is added

• Transactions are atomic, so it’s easy to “get” the current state of the database

27

Advantages of relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

• Non-relational databases support more flexibility

• Structure imposes restrictions

• Adding a new field (column) can mess up a relational database

• Non-relational databases are faster for simple operations

• It’s much easier to “watch all the files” than to query and index many rows
across multiple tables

28

Advantages of non-relational databases

https://www.mongodb.com/scale/relational-vs-non-relational-database
https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

Databases

• Relational databases tend to be used in Enterprise, large-scale applications

• It’s important that data conforms to standards

• It’s important to robustly query large amounts of data

• Non-relational databases tend to be used in smaller applications

• Data flexibility is valuable

• Data is small enough to reliably retrieve and parse

• That said, plenty of large apps use non-relational databases and vice versa

29

Relational vs. Non-relational

Databases vs. Local Storage

• Who needs access to the data?

• Just the user, or others?

• As a developer, do you need access?

• Is the data sensitive?
• Is the data valuable enough that it should not be lost?

30

Databases vs. Local Storage

• Databases are crucial if more than the local device needs access

• Cross-device app: facebook.com and the mobile app need your profile information

• Developer: to understand habits across users or provide a data-driven service

• Some privacy can be preserved if data is only stored locally
• Which to use depends on the type of data and context

31

One non-relational database: Firebase

32

Firebase
• First released in 2011
• Acquired by Google in 2014
• Has features besides databases

• Media storage

• Authentication

• Analytics

33

Firebase

• Create a new project: https://firebase.google.com/
• Create a database

34

Setting up the database

Firebase

• Start your database in “test mode”

• Anyone can read or write
to your database

• This means anyone, even localhost

• Gets around browser’s origin restriction

• This is bad practice, of course.
It’s better to allow specific users

• Take a databases class
to learn about permissions

35

Setting up the database

Firebase

36

Setting up the database

Firebase

• Firebase documents (objects) are organized into collections
• Collections are somewhat like tables in relational databases
• But Firebase is non-relational and has no structure requirement
• Multiple documents in the same collection may have different structure
• Example collections: users, sleepdata

37

Setting up the database

https://firebase.google.com/docs/firestore/data-model

Firebase

• Angular officially supports a Firebase library

• It works with Ionic since Ionic builds on Angular

• npm install firebase

• npm install @angular/fire

38

Setting up the mobile app

https://github.com/angular/angularfire

Firebase

• Add configuration information
for your Firebase app to
environments.ts file in Ionic

• Edit Ionic’s module.ts to point to
this environment information

• Also add AngularFirestoreModule to
the module.ts

39

Setting up the mobile app

https://github.com/angular/angularfire/blob/master/docs/install-and-setup.md

Firebase

• AngularFirestore is a service and is injected like any other service

• Can retrieve a collection by its name

import { AngularFirestore, AngularFirestoreCollection, DocumentData } from '@angular/fire/firestore';
import { Observable } from 'rxjs';

export class FirebaseService {
collection:AngularFirestoreCollection;

constructor(db:AngularFirestore) {
this.collection = db.collection('test-collection');

}
}

40

Accessing the database from the mobile app

Firebase

41

Getting some data

Firebase

• We probably don’t want to “get” data once

• What if someone logged their sleep from their desktop?

• Documents can be large, it takes some time for a transaction to complete

• Instead of “getting”, we use an Observable to listen for any time the data changes

• Same as listening for new accelerometer data every second with Ionic Native

42

Accessing the database from the mobile app

Firebase

/* .component.ts */
export class MyApp {

testItems: Observable<any[]>;
constructor(db: AngularFirestore) {

this.testItems = db.collection(‘test-collection').valueChanges();
}

}

<!--.component.html -->

<li *ngFor="let item of testItems | async">
{{ item.name }}

43

Listening for changes

Firebase

• New objects can be added asynchronously
export class FirebaseService {
collection:AngularFirestoreCollection;

constructor(db:AngularFirestore) {
this.collection = db.collection('test-collection');

}

addData(data:{}) {
this.collection.add(data).then((reference) => {
console.log("Reference to added data, kind of like a URL");
console.log(reference);

});
}

}

44

Add

Firebase

• The string reference can be used to delete or update documents

deleteDocument(reference:string) {
this.collection.doc(reference).delete().then(() => {

console.log('The document at ' + reference + 'no longer exists');
});

}

updateDocument(reference:string, newData:{}) {
this.collection.doc(reference).update(newData).then(() => {

console.log('The document at ' + reference + 'is now ' + newData);
});

}

45

Delete and Update

Firebase

var citiesRef = db.collection("cities");

citiesRef.doc("SF").set({
name: "San Francisco", state: "CA", country: "USA",
capital: false, population: 860000,
regions: ["west_coast", "norcal"] });

citiesRef.doc("LA").set({
name: "Los Angeles", state: "CA", country: "USA",
capital: false, population: 3900000,
regions: ["west_coast", "socal"] });

citiesRef.doc("DC").set({
name: "Washington, D.C.", state: null, country: "USA",
capital: true, population: 680000,
regions: ["east_coast"] });

citiesRef.doc("TOK").set({
name: "Tokyo", state: null, country: "Japan",
capital: true, population: 9000000,
regions: ["kanto", "honshu"] });

citiesRef.doc("BJ").set({
name: "Beijing", state: null, country: "China",
capital: true, population: 21500000,
regions: ["jingjinji", "hebei"] });

4
6

Querying data
var citiesRef = db.collection("cities");

citiesRef.where("state", "==", “CA");
//SF, LA

citiesRef.where("capital", "==", true);
//D.C., Tokyo, Beijing

citiesRef.where("population", "<", 1000000);
//LA, Tokyo, Beijing

citiesRef.where("name", ">=", "San Francisco");
//SF, Tokyo, D.C.

https://firebase.google.com/docs/firestore/query-data/queries

Firebase

• Firebase expects JSON rather than a TypeScript object

• TypeScript classes need to be converted to and from JSON
export class DataLog {
id:string;
values:number[];

toObject():{} {
return {'id':this.id,
'value':this.values};

}

fromObject(object:{}) {
this.id = object['id'];
this.values = object['value'];

}
}

47

Converting TypeScript objects to and from JSON

Firebase

• Non-primitive fields, like Date, may need extra conversion
export class DataLog {
date:Date;

toObject():{} {
return {'date':this.date};

}

fromObject(object:{}) {
//Stored as number of milliseconds
this.date = new Date(object['date'].seconds*1000);

}
}

48

Converting TypeScript objects to and from JSON

Goals for today’s lecture

• Differentiate relational from non-relational databases
• Explain the advantages of each style of database
• Use Firebase to implement a non-relational database

4
9

By the end of this lecture, you should be able to…

