INAMATX 133: User Interface Software

Lecture:
Databases and Local Storage



Goals for today’s lecture
By the end of this lecture, you should be able to...

e Differentiate relational from non-relational databases
* Explain the advantages of each style of database

* Use Firebase to implement a non-relational database



Today is a crash course in databases
CS 122A and 122B provide substantially more
depth



Data storage

* What happens when we refresh the A4 sleep tracking app?

* We lose all of the data we logged

* This is obviously not ideal

* We have to tell the browser, app, etc. to store it



Data storage

* Data can be stored locally on a device
* Android and iOS allow apps to store some data

* lonic Native provides (good) libraries for using local storage



Local Storage

* In lonic, can store key-value pairs

* Keys must be strings, values can be any type

* This is actually a non-relational database!

* More on this in a few slides

https://ionicframework.com/docs/building/storage#ionic-storage

6



Local Storage

ionic cordova plugin add cordova-sglite-storage

npm install --save @ionic/storage

* Don’t forget to add it to your module and inject it!

storage.set ('name', 'Max');

// Or to get a key/value pair
storage.get ('age') .then((val) => {
console.log('Your age is', wval);

1)

https://ionicframework.com/docs/building/storage#ionic-storage
7




Local Storage




If we can store data on devices,
why do we need databases?



Databases

* Provide reliability

* You can get your data back if your phone dies or you get a new phone

* Provide cross-device support

* Allow you to see and modify the same data across a phone and a desktop,
for example



Databases

e Are more than files stored in the cloud

* Can be “queried” efficiently to get subsets of data

* Two main approaches to making databases
* Relational databases: MySQL, Postgres

* Non-relational databases: MongoDB, Firebase

* Transaction: any add/delete/update/etc. made to a database



Databases
Relational databases

* Everything is organized into tables
e Tables contain columns with predefined names and data types

* Tables “relate” to one another by having overlapping or similar columns

* Minimizes redundancy and keeps order

e Every data entry is a row of a table

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

12



Databases

Relational databases

Relational
Person:
Pers_ID First_ Name  Last_Name City

1 Dexter Lanasa Vancouver
2 Ava Crim Denver
3 Michael Plumer Mew York City
4 Olivia Canlin Dallas
5 Sophia Hassett Atlanta
& Mason Mara San Francisco

Phone Mumbers:
Phone_ID Phone_Mumber  Type Person_ID
75 111-111-1111  Mobile 1
76 222-222-2222 Home
77 333-333-3333  Mobile
78 A444-444-4444 Home
79 555-555-5555 Home
BO Obuls-O66-6b66  Mohile
81 T71-T77-T177  Office
a2 B808-888-8888 Mobile
B3 999-999-9999  Mobile
84 111-222-2222  Office

(LT T - R St

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

13



Databases

Relational databases

CREATE TABLE IF NOT EXISTS tasks (
task id INT AUTO INCREMENT,
title VARCHAR (255) NOT NULL,
start date DATE,
due date DATE,
status TINYINT NOT NULL,
priority TINYINT NOT NULL,
description TEXT,

PRIMARY KEY (task id)

) ENGINE=INNODB;

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

14



Databases
Non-relational databases

* Everything is organized into objects
* There are no restrictions on how objects are structured

* Every data entry is an object, or “document”

* Documents may be structured differently from one another

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

15



Databases

Non-relational databases

MongoDB
Document

{
first_ name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-11171’,
type: mobile,
person id: 1, ...},
{ phone_number: ‘444-444-4444’,
type: home,
person id: 1, ...},
{ phone_number: ‘777-777-7777',
type: office,
person id: 1, ...},
|
}

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/
https://www.mongodb.com/scale/relational-vs-non-relational-database

16



Databases
Non-relational databases

* There is no well-defined enforced structure

* That said, flatter structures are generally better

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

17



Databases

Non-relational databases

// This is a poorly nested data architecture, because iterating the children
// of the "chats" node to get a list of conversation titles requires
// potentially downloading hundreds of megabytes of messages

"chats": {
"one": {
"title": "Historical Tech Pioneers",
"messages": {
"ml": { "sender": "ghopper", "message": "Relay malfunction found. Cause: moth."
"m2": { ... },

// a very long list of messages

s
"two": { ... }

https://firebase.google.com/docs/database/ios/structure-data

}y

18



Databases
Non-relational databases

// Chats contains only meta info about each conversation stored under the chats's unique ID

"chats": {
"one": {
"title": "Historical Tech Pioneers",
"lastMessage": "ghopper: Relay malfunction found. Cause: moth."
}l
"two": { ... }

}y
// Messages are separate from data we may want to iterate quickly but still easily paginated and queried,
// and organized by chat conversation ID

"messages": {
"one": {
"ml": |
"name": "eclarke",
"message": "The relay seems to be malfunctioning."
}I
"m2": { ...}
by
"two": { ... }

}

https://firebase.google.com/docs/database/ios/structure-data

19



Which database structure will be best

for retrieving all first names?

@The relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}

20



Which database structure will be best

for retrieving all first names?

aThe relational database

The non-relational database

GThey will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}

21



Which database structure will be best
for retrieving all phone numbers?

@The relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}

22



Which database structure will be best
for retrieving all phone numbers?

aThe relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}

23



Which database structure will be best
for retrieving all data?

@ The relational data base Relational Non-relational

Person:
{

first_name: ‘Dexter’,

Pers_ID  First_Name Last_Name City

1 Dexter Lanasa Mancouver
h - | 1 I d b 2 Ava Crim Denver IaSt—namE: 'Lanas'
° T e n O n re at I 0 n a ata a Se 3 Michael Plumer  New York City city: ‘Vancouver'
4 Olivia Conlin Dallas location: [45.123,47.232],
5 Sophia Hassett Atlanta phones: [
. 6 Mason Mora San Francisco [ phone_number: 111-111-1117"
They will be about the same Aot bpes mobae,
Phone_ID Phone_Number Type  Person_ID person_id: 1, ... },
75 111-111-1111  Mobile 1 1 | [ phone_number: ‘444_444_4444"

76 222-222-2222 Home

’ 77 3333333333 Mobil
I m n Ot sure 78 444-444-4444 Hm::
79 555.555.5555 Home

a0 666-666-06666  Mobile

type: home,
person_id: 1, ... },

{ phone_number: ‘777-777-7777',
type: office,

81 777-777-7777 Office person_id: 1, ...},

@ [space intentionally left blank] e o

P A T A T

84 111-222-2222  Office

24



Which database structure will be best
for retrieving all data?

@ The relational data base Relational Non-relational

Person:

Pers_ID  First_Name Last_Name City { first name: 'Dexter’
1 Dexter Lanasa Vancouver = 5 '
h _ | . I d b = - — = last_name: ‘Lanas’
T € non-rela t IONna d ta ase 3 Mic:\:el p\.;rl:; New :::rcny city: 'Vancouver'
4 Olivia Conlin Dallas location: [45.123,47.232],
5 Sophia Hassett Atlanta phones: [
. ] Mason Mora San Francisco { phone_number: 111-111-1117"
They will be about the same Homsiiaes type: mobile,
Phone_ID Phone_Number Type  Person_ID person_id: 1, ... },
75 111-111-1111 Mobile 1 T[] { phone_number: '444-444-4444,

76 222-222-2222 Home

’ 77 3333333333 Mobil
I m n Ot sure 78 444-444-4444 Hm::
79 555.555.5555 Home

a0 666-666-06666  Mobile

type: home,
person_id: 1, ... },

{ phone_number: ‘777-777-7777',
type: office,

81 777-777-7777 Office person_id: 1, ...},

@ [space intentionally left blank] e o

P A T A T

84 111-222-2222  Office

25



Databases
Advantages of relational databases

* Relational databases support better querying
* Provide languages for querying, such as Structured Query Language (SQL)
* Those languages can be used to ask for specific tables or even join data across tables

* “Give me the first name of every user whose phone number starts with 949”

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

26



Databases
Advantages of relational databases

* Relational databases are more organized

* Because field types are defined, data reliably follows that structure

e Relational databases are more reliable
e Structure is enforced when new data is added

* Transactions are atomic, so it’s easy to “get” the current state of the database

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

27



Databases
Advantages of non-relational databases

* Non-relational databases support more flexibility
* Structure imposes restrictions

* Adding a new field (column) can mess up a relational database

* Non-relational databases are faster for simple operations

* |t’s much easier to “watch all the files” than to query and index many rows
across multiple tables

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database

28



Databases
Relational vs. Non-relational

* Relational databases tend to be used in Enterprise, large-scale applications
* |t's important that data conforms to standards

* It'simportant to robustly query large amounts of data

* Non-relational databases tend to be used in smaller applications

* Data flexibility is valuable

e Data is small enough to reliably retrieve and parse

* That said, plenty of large apps use non-relational databases and vice versa

29



Databases vs. Local Storage

* Who needs access to the data?
* Just the user, or others?

* As a developer, do you need access?
* |s the data sensitive?
* |s the data valuable enough that it should not be lost?



Databases vs. Local Storage

e Databases are crucial if more than the local device needs access

* Cross-device app: facebook.com and the mobile app need your profile information

* Developer: to understand habits across users or provide a data-driven service
* Some privacy can be preserved if data is only stored locally
* Which to use depends on the type of data and context



One non-relational database: Firebase



Firebase

* First released in 2011
* Acquired by Google in 2014

 Has features besides databases
* Media storage
* Authentication

* Analytics

»  Firebase

33



Firebase

Setting up the database

* Create a new project: https://firebase.google.com/

e Create a database

@ Firebase

Cloud Firestore

The next generation of the Realtime

Database with more powerful queries ani

automatic scaling

d

34



Firebase
Setting up the database

Start your database in “test mode”

* Anyone can read or write
to your database

* This means anyone, even localhost
* Gets around browser’s origin restriction

* This is bad practice, of course.
It’s better to allow specific users

* Take a databases class
to learn about permissions

Security rules for Cloud Firestore X

Once you have defined your data structure you will have to write rules to secure your data.
Learn more [4

() startin locked mode

Make your database private by
denying all reads and writes

service cloud.firestore {
match /databases/{database}/documents {
match /{document=»*} {
@ Start in test mode allow read, write;
Get set up quickly by allowing all }
reads and writes to your database

¥

@ Anyone with your database reference will be
able to read or write to your database

Enabling Cloud Firestore Beta will preclude you from using Cloud Datastore with this
- . Cancel
project, notably from the associated App Engine app.

35



Firebase

Setting up the database

fi

A test-b8938

-+ Add collection

il

se is ready to go. Just add data

36



Firebase
Setting up the database

Firebase documents (objects) are organized into collections

Collections are somewhat like tables in relational databases

But Firebase is non-relational and has no structure requirement

Multiple documents in the same collection may have different structure

Example collections: users, sleepdata

https://firebase.google.com/docs/firestore/data-model




Firebase
Setting up the mobile app

* Angular officially supports a Firebase library

* |t works with lonic since lonic builds on Angular
* npm install firebase

* npm install @angular/fire

https://github.com/angular/angularfire

38



Firebase
Setting up the mobile app

* Add configuration information
for your Firebase app to
environments. ts file in lonic

e Edit lonic’'smodule. ts to point to
this environment information

* Also add AngularFirestoreModule to
the module.ts

https://github.com/angular/angularfire/blob/master/docs/install-and-setup.md

There are no apps in your project

©00 <«

Go to docs

39



Firebase
Accessing the database from the mobile app

e AngularFirestore isaservice and is injected like any other service

* Can retrieve a collection by its name

import { AngularFirestore, AngularFirestoreCollection, DocumentData } from 'GCangular/fire/firestore’';
import { Observable } from 'rxjs';

export class FirebaseService {
collection:AngularFirestoreCollection;

constructor (db:AngularFirestore) {
this.collection = db.collection('test-collection');

}
}

40



Firebase

Getting some data

41



Firebase
Accessing the database from the mobile app

* We probably don’t want to “get” data once
* What if someone logged their sleep from their desktop?
* Documents can be large, it takes some time for a transaction to complete
* Instead of “getting”, we use an Observable to listen for any time the data changes

* Same as listening for new accelerometer data every second with lonic Native

42



Firebase
Listening for changes

/* .component.ts */

export class MyApp {
testItems: Observable<any|[]>;

constructor (db: AngularFirestore) {
this.testItems = db.collection(‘test-collection') .valueChanges():;

}

<!--.component.html -->

<ul>
<1li *ngFor="let item of testlItems | async">

{{ item.name }}
</1li>
</ul>



Firebase
Add

* New objects can be added asynchronously

export class FirebaseService {
collection:AngularFirestoreCollection;

constructor (db:AngularFirestore) {
this.collection = db.collection('test-collection');

}

addData (data:{}) {
this.collection.add(data) .then ((reference) => {

console.log("Reference to added data, kind of like a URL");

console.log(reference);
}) g
}

44



Firebase
Delete and Update

* The string reference can be used to delete or update documents

deleteDocument (reference:string) {
this.collection.doc (reference) .delete () .then(() => {
console.log('The document at ' + reference + 'no longer exists');

1)
}

updateDocument (reference:string, newData:{}) {
this.collection.doc (reference) .update (newData) .then (() => {
console.log('The document at ' + reference + 'is now ' + newData);

)

45



Firebase
Querying data

var citiesRef = db.collection("cities");

citiesRef.doc ("SE") .set ({

name: "San Francisco", state: "CA", country: "USA",

capital: false, population: 860000,

regions: ["west coast'", "norcal"] });
citiesRef.doc ("LA") .set ({

name: "Los Angeles'", state: "CA", country: "USA",

capital: false, population: 3900000,

regions: ["west coast'", "socal] });
citiesRef.doc ("DC") .set ({

name: "Washington, D.C.", state: null, country: "USA",

capital: true, population: 680000,

regions: ["east coast"] });
citiesRef.doc ("TOK") .set ({

name: "Tokyo", state: null, country: "Japan",

capital: true, population: 9000000,

regions: ["kanto", "honshu"] });
citiesRef.doc ("BJ") .set ({

name: "Beijing", state: null, country: "China'",

capital: true, population: 21500000,

regions: ["jingjinji", "hebei] });

https://firebase.google.com/docs/firestore/query-data/queries

4
6

var citiesRef = db.collection("cities");
citiesRef.where("state", "==", “CA");
//SF, LA

citiesRef.where("capital", "==", true);

//D.C., Tokyo, Beijing

citiesRef.where ("population",
//LA, Tokyo, Beijing

citiesRef.where ("name™™, ">=",
//SF, Tokyo, D.C.

"<, 1000000) ;

"San Francisco")

14



Firebase
Converting TypeScript objects to and from JSON

* Firebase expects JSON rather than a TypeScript object

e TypeScript classes need to be converted to and from JSON

export class Datalog {
id:string;
values:number|];

toObject () : {} {
return {'id':this.id,
'value':this.values};

}

fromObject (object:{}) {
this.id = object['id'"'];
this.values = object['value'];
}
}

47



Firebase
Converting TypeScript objects to and from JSON

* Non-primitive fields, like Date, may need extra conversion

export class Datalog ({
date:Date;

toObject () : {} {
return {'date':this.date};

}

fromObject (object:{}) {
//Stored as number of milliseconds
this.date = new Date(object['date'].seconds*1000);

}

48



Goals for today’s lecture
By the end of this lecture, you should be able to...

e Differentiate relational from non-relational databases
* Explain the advantages of each style of database

* Use Firebase to implement a non-relational database



