INAMATX 133: User Interface Software

Lecture:
Databases and Local Storage



Goals for today’s lecture
By the end of this lecture, you should be able to...

e Differentiate relational from non-relational databases
* Explain the advantages of each style of database

* Use Firebase to implement a non-relational database



Today is a crash course in databases
CS 122A and 122B provide substantially more
depth



Data storage

* What happens when we refresh the A4 sleep tracking app?

* We lose all of the data we logged

* This is obviously not ideal

* We have to tell the browser, app, etc. to store it



Data storage

* Data can be stored locally on a device
* Android and iOS allow apps to store some data

* lonic Native provides (good) libraries for using local storage



Local Storage

* In lonic, can store key-value pairs

* Keys must be strings, values can be any type

* This is actually a non-relational database!

* More on this in a few slides

https://ionicframework.com/docs/building/storage#ionic-storage
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Local Storage

ionic cordova plugin add cordova-sglite-storage

npm install --save @ionic/storage

* Don’t forget to add it to your module and inject it!

storage.set ('name', 'Max');

// Or to get a key/value pair
storage.get ('age') .then((val) => {
console.log('Your age is', wval);

1)

https://ionicframework.com/docs/building/storage#ionic-storage
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Local Storage




If we can store data on devices,
why do we need databases?



Databases

* Provide reliability

* You can get your data back if your phone dies or you get a new phone

* Provide cross-device support

* Allow you to see and modify the same data across a phone and a desktop,
for example



Databases

e Are more than files stored in the cloud

* Can be “queried” efficiently to get subsets of data

* Two main approaches to making databases
* Relational databases: MySQL, Postgres

* Non-relational databases: MongoDB, Firebase

* Transaction: any add/delete/update/etc. made to a database



Databases
Relational databases

* Everything is organized into tables
e Tables contain columns with predefined names and data types

* Tables “relate” to one another by having overlapping or similar columns

* Minimizes redundancy and keeps order

e Every data entry is a row of a table

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases

Relational databases

Relational
Person:
Pers_ID First_ Name  Last_Name City

1 Dexter Lanasa Vancouver
2 Ava Crim Denver
3 Michael Plumer Mew York City
4 Olivia Canlin Dallas
5 Sophia Hassett Atlanta
& Mason Mara San Francisco

Phone Mumbers:
Phone_ID Phone_Mumber  Type Person_ID
75 111-111-1111  Mobile 1
76 222-222-2222 Home
77 333-333-3333  Mobile
78 A444-444-4444 Home
79 555-555-5555 Home
BO Obuls-O66-6b66  Mohile
81 T71-T77-T177  Office
a2 B808-888-8888 Mobile
B3 999-999-9999  Mobile
84 111-222-2222  Office

(LT T - R St

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases

Relational databases

CREATE TABLE IF NOT EXISTS tasks (
task id INT AUTO INCREMENT,
title VARCHAR (255) NOT NULL,
start date DATE,
due date DATE,
status TINYINT NOT NULL,
priority TINYINT NOT NULL,
description TEXT,

PRIMARY KEY (task id)

) ENGINE=INNODB;

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases
Non-relational databases

* Everything is organized into objects
* There are no restrictions on how objects are structured

* Every data entry is an object, or “document”

* Documents may be structured differently from one another

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases

Non-relational databases

MongoDB
Document

{
first_ name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-11171’,
type: mobile,
person id: 1, ...},
{ phone_number: ‘444-444-4444’,
type: home,
person id: 1, ...},
{ phone_number: ‘777-777-7777',
type: office,
person id: 1, ...},
|
}

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/
https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases
Non-relational databases

* There is no well-defined enforced structure

* That said, flatter structures are generally better

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases

Non-relational databases

// This is a poorly nested data architecture, because iterating the children
// of the "chats" node to get a list of conversation titles requires
// potentially downloading hundreds of megabytes of messages

"chats": {
"one": {
"title": "Historical Tech Pioneers",
"messages": {
"ml": { "sender": "ghopper", "message": "Relay malfunction found. Cause: moth."
"m2": { ... },

// a very long list of messages

s
"two": { ... }

https://firebase.google.com/docs/database/ios/structure-data

}y
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Databases
Non-relational databases

// Chats contains only meta info about each conversation stored under the chats's unique ID

"chats": {
"one": {
"title": "Historical Tech Pioneers",
"lastMessage": "ghopper: Relay malfunction found. Cause: moth."
}l
"two": { ... }

}y
// Messages are separate from data we may want to iterate quickly but still easily paginated and queried,
// and organized by chat conversation ID

"messages": {
"one": {
"ml": |
"name": "eclarke",
"message": "The relay seems to be malfunctioning."
}I
"m2": { ...}
by
"two": { ... }

}

https://firebase.google.com/docs/database/ios/structure-data
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Which database structure will be best

for retrieving all first names?

@The relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}
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Which database structure will be best

for retrieving all first names?

aThe relational database

The non-relational database

GThey will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}
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Which database structure will be best
for retrieving all phone numbers?

@The relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}
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Which database structure will be best
for retrieving all phone numbers?

aThe relational database

The non-relational database

@They will be about the same

@ I’m not sure

@ [space intentionally left blank]

Relational

Person:

Pers_ID  First_Name Last_Name

1

o B W

Dexter
Ava
Michael
Olivia
Sophia
Mason

Phone Numbers:

Phone_ID Phone_Number

75
76
i
78
79
a0
a1
82
B3
Ba

111-111-1111
222-222-2222
333-333-3333
444-444-4444
555-555-5555
H66-666-6666
1771777777
888-888-8888
999-999-9999
111-222-2222

Lanasa
Crim
Plumer
Conlin
Hassett
Mora

Type
Moabile
Home
Mobile
Home
Home
Mobile
Office
Mobile
Mobile
Office

City

Vancouver

MNew York City

Denver

Dallas
Atlanta

San Francisco

Person_ID

1

P A T A T

Non-relational

{
first_name: ‘Dexter’,
last_name: ‘Lanas’
city: ‘Vancouver'
location: [45.123,47.232],
phones: [
{ phone_number: ‘111-111-1117’,
type: mobile,
person_id: 1, ... },
{ phone_number: ‘444-444-4444’,
type: home,
person_id: 1, ... },
{ phone_number: ‘777-777-7777',
type: office,
person_id: 1, ... },
|
}
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Which database structure will be best
for retrieving all data?

@ The relational data base Relational Non-relational

Person:
{

first_name: ‘Dexter’,

Pers_ID  First_Name Last_Name City

1 Dexter Lanasa Mancouver
h - | 1 I d b 2 Ava Crim Denver IaSt—namE: 'Lanas'
° T e n O n re at I 0 n a ata a Se 3 Michael Plumer  New York City city: ‘Vancouver'
4 Olivia Conlin Dallas location: [45.123,47.232],
5 Sophia Hassett Atlanta phones: [
. 6 Mason Mora San Francisco [ phone_number: 111-111-1117"
They will be about the same Aot bpes mobae,
Phone_ID Phone_Number Type  Person_ID person_id: 1, ... },
75 111-111-1111  Mobile 1 1 | [ phone_number: ‘444_444_4444"

76 222-222-2222 Home

’ 77 3333333333 Mobil
I m n Ot sure 78 444-444-4444 Hm::
79 555.555.5555 Home

a0 666-666-06666  Mobile

type: home,
person_id: 1, ... },

{ phone_number: ‘777-777-7777',
type: office,

81 777-777-7777 Office person_id: 1, ...},

@ [space intentionally left blank] e o

P A T A T

84 111-222-2222  Office
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Which database structure will be best
for retrieving all data?

@ The relational data base Relational Non-relational

Person:

Pers_ID  First_Name Last_Name City { first name: 'Dexter’
1 Dexter Lanasa Vancouver = 5 '
h _ | . I d b = - — = last_name: ‘Lanas’
T € non-rela t IONna d ta ase 3 Mic:\:el p\.;rl:; New :::rcny city: 'Vancouver'
4 Olivia Conlin Dallas location: [45.123,47.232],
5 Sophia Hassett Atlanta phones: [
. ] Mason Mora San Francisco { phone_number: 111-111-1117"
They will be about the same Homsiiaes type: mobile,
Phone_ID Phone_Number Type  Person_ID person_id: 1, ... },
75 111-111-1111 Mobile 1 T[] { phone_number: '444-444-4444,

76 222-222-2222 Home

’ 77 3333333333 Mobil
I m n Ot sure 78 444-444-4444 Hm::
79 555.555.5555 Home

a0 666-666-06666  Mobile

type: home,
person_id: 1, ... },

{ phone_number: ‘777-777-7777',
type: office,

81 777-777-7777 Office person_id: 1, ...},

@ [space intentionally left blank] e o

P A T A T

84 111-222-2222  Office
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Databases
Advantages of relational databases

* Relational databases support better querying
* Provide languages for querying, such as Structured Query Language (SQL)
* Those languages can be used to ask for specific tables or even join data across tables

* “Give me the first name of every user whose phone number starts with 949”

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases
Advantages of relational databases

* Relational databases are more organized

* Because field types are defined, data reliably follows that structure

e Relational databases are more reliable
e Structure is enforced when new data is added

* Transactions are atomic, so it’s easy to “get” the current state of the database

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases
Advantages of non-relational databases

* Non-relational databases support more flexibility
* Structure imposes restrictions

* Adding a new field (column) can mess up a relational database

* Non-relational databases are faster for simple operations

* |t’s much easier to “watch all the files” than to query and index many rows
across multiple tables

https://www.neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases/

https://www.mongodb.com/scale/relational-vs-non-relational-database
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Databases
Relational vs. Non-relational

* Relational databases tend to be used in Enterprise, large-scale applications
* |t's important that data conforms to standards

* It'simportant to robustly query large amounts of data

* Non-relational databases tend to be used in smaller applications

* Data flexibility is valuable

e Data is small enough to reliably retrieve and parse

* That said, plenty of large apps use non-relational databases and vice versa
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Databases vs. Local Storage

* Who needs access to the data?
* Just the user, or others?

* As a developer, do you need access?
* |s the data sensitive?
* |s the data valuable enough that it should not be lost?



Databases vs. Local Storage

e Databases are crucial if more than the local device needs access

* Cross-device app: facebook.com and the mobile app need your profile information

* Developer: to understand habits across users or provide a data-driven service
* Some privacy can be preserved if data is only stored locally
* Which to use depends on the type of data and context



One non-relational database: Firebase



Firebase

* First released in 2011
* Acquired by Google in 2014

 Has features besides databases
* Media storage
* Authentication

* Analytics

»  Firebase
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Firebase

Setting up the database

* Create a new project: https://firebase.google.com/

e Create a database

@ Firebase

Cloud Firestore

The next generation of the Realtime

Database with more powerful queries ani

automatic scaling

d
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Firebase
Setting up the database

Start your database in “test mode”

* Anyone can read or write
to your database

* This means anyone, even localhost
* Gets around browser’s origin restriction

* This is bad practice, of course.
It’s better to allow specific users

* Take a databases class
to learn about permissions

Security rules for Cloud Firestore X

Once you have defined your data structure you will have to write rules to secure your data.
Learn more [4

() startin locked mode

Make your database private by
denying all reads and writes

service cloud.firestore {
match /databases/{database}/documents {
match /{document=»*} {
@ Start in test mode allow read, write;
Get set up quickly by allowing all }
reads and writes to your database

¥

@ Anyone with your database reference will be
able to read or write to your database

Enabling Cloud Firestore Beta will preclude you from using Cloud Datastore with this
- . Cancel
project, notably from the associated App Engine app.

35



Firebase

Setting up the database

fi

A test-b8938

-+ Add collection

il

se is ready to go. Just add data
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Firebase
Setting up the database

Firebase documents (objects) are organized into collections

Collections are somewhat like tables in relational databases

But Firebase is non-relational and has no structure requirement

Multiple documents in the same collection may have different structure

Example collections: users, sleepdata

https://firebase.google.com/docs/firestore/data-model




Firebase
Setting up the mobile app

* Angular officially supports a Firebase library

* |t works with lonic since lonic builds on Angular
* npm install firebase

* npm install @angular/fire

https://github.com/angular/angularfire
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Firebase
Setting up the mobile app

* Add configuration information
for your Firebase app to
environments. ts file in lonic

e Edit lonic’'smodule. ts to point to
this environment information

* Also add AngularFirestoreModule to
the module.ts

https://github.com/angular/angularfire/blob/master/docs/install-and-setup.md

There are no apps in your project

©00 <«

Go to docs
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Firebase
Accessing the database from the mobile app

e AngularFirestore isaservice and is injected like any other service

* Can retrieve a collection by its name

import { AngularFirestore, AngularFirestoreCollection, DocumentData } from 'GCangular/fire/firestore’';
import { Observable } from 'rxjs';

export class FirebaseService {
collection:AngularFirestoreCollection;

constructor (db:AngularFirestore) {
this.collection = db.collection('test-collection');

}
}
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Firebase

Getting some data

41



Firebase
Accessing the database from the mobile app

* We probably don’t want to “get” data once
* What if someone logged their sleep from their desktop?
* Documents can be large, it takes some time for a transaction to complete
* Instead of “getting”, we use an Observable to listen for any time the data changes

* Same as listening for new accelerometer data every second with lonic Native
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Firebase
Listening for changes

/* .component.ts */

export class MyApp {
testItems: Observable<any|[]>;

constructor (db: AngularFirestore) {
this.testItems = db.collection(‘test-collection') .valueChanges():;

}

<!--.component.html -->

<ul>
<1li *ngFor="let item of testlItems | async">

{{ item.name }}
</1li>
</ul>



Firebase
Add

* New objects can be added asynchronously

export class FirebaseService {
collection:AngularFirestoreCollection;

constructor (db:AngularFirestore) {
this.collection = db.collection('test-collection');

}

addData (data:{}) {
this.collection.add(data) .then ((reference) => {

console.log("Reference to added data, kind of like a URL");

console.log(reference);
}) g
}
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Firebase
Delete and Update

* The string reference can be used to delete or update documents

deleteDocument (reference:string) {
this.collection.doc (reference) .delete () .then(() => {
console.log('The document at ' + reference + 'no longer exists');

1)
}

updateDocument (reference:string, newData:{}) {
this.collection.doc (reference) .update (newData) .then (() => {
console.log('The document at ' + reference + 'is now ' + newData);

)
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Firebase
Querying data

var citiesRef = db.collection("cities");

citiesRef.doc ("SE") .set ({

name: "San Francisco", state: "CA", country: "USA",

capital: false, population: 860000,

regions: ["west coast'", "norcal"] });
citiesRef.doc ("LA") .set ({

name: "Los Angeles'", state: "CA", country: "USA",

capital: false, population: 3900000,

regions: ["west coast'", "socal] });
citiesRef.doc ("DC") .set ({

name: "Washington, D.C.", state: null, country: "USA",

capital: true, population: 680000,

regions: ["east coast"] });
citiesRef.doc ("TOK") .set ({

name: "Tokyo", state: null, country: "Japan",

capital: true, population: 9000000,

regions: ["kanto", "honshu"] });
citiesRef.doc ("BJ") .set ({

name: "Beijing", state: null, country: "China'",

capital: true, population: 21500000,

regions: ["jingjinji", "hebei] });

https://firebase.google.com/docs/firestore/query-data/queries

4
6

var citiesRef = db.collection("cities");
citiesRef.where("state", "==", “CA");
//SF, LA

citiesRef.where("capital", "==", true);

//D.C., Tokyo, Beijing

citiesRef.where ("population",
//LA, Tokyo, Beijing

citiesRef.where ("name™™, ">=",
//SF, Tokyo, D.C.

"<, 1000000) ;

"San Francisco")
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Firebase
Converting TypeScript objects to and from JSON

* Firebase expects JSON rather than a TypeScript object

e TypeScript classes need to be converted to and from JSON

export class Datalog {
id:string;
values:number|];

toObject () : {} {
return {'id':this.id,
'value':this.values};

}

fromObject (object:{}) {
this.id = object['id'"'];
this.values = object['value'];
}
}
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Firebase
Converting TypeScript objects to and from JSON

* Non-primitive fields, like Date, may need extra conversion

export class Datalog ({
date:Date;

toObject () : {} {
return {'date':this.date};

}

fromObject (object:{}) {
//Stored as number of milliseconds
this.date = new Date(object['date'].seconds*1000);

}
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Goals for today’s lecture
By the end of this lecture, you should be able to...

e Differentiate relational from non-relational databases
* Explain the advantages of each style of database

* Use Firebase to implement a non-relational database



