
IN4MATX 133: User Interface Software

1

Lecture:
Mobile Design Principles
& SASS

Goals for this lecture

• Follow high-level guidelines for developing mobile interfaces
• Find and interpret platform-specific human interface guidelines
• Differentiate iOS and Android platform guidelines
• Explain why we might use a preprocessor like SASS for CSS
• Use SASS variables, mixins, nesting, and operators to simplify CSS

2

By the end of this lecture, you should be able to…

What makes a good user experience?

• It’s not just the UI

• The experience begins with the first time you launch an app or go to a website

• There are several components here

• Initial impression (boot up to app start)

• User interface

• Visual design

• Information presentation

• The physical device and how it is used with the app

3

A few principles of mobile design

• A useful initial view
• The “uh-oh” button
• Error prevention
• Follow platform conventions

4

A useful initial view
• Give users clear calls to action
• Put useful content

on the homepage

• Pinterest’s images

• Put more than navigation buttons

• Make it easy to get back
to the homepage

• Bottom navbar, side navigation menu

5

Pinterest Anxiety
management
app

The “uh-oh” button
• Functions and buttons are often

pressed by mistake
• Undo and redo should be easy

• Gmail: “undo send”

• Navigating back a page should
be easy

• Breadcrumbs or back buttons (top left)

6

Gmail

Error prevention
• Providing input with small devices

is difficult

• Add in as much assistance
as possible to aid with input

• Add input checks

• How many digits are in that phone number?
Credit card number?

• Use appropriate widgets

• Date/time spinner

• Sliders

7

Follow platform conventions
• Users should not have to wonder

whether different words,
situations, icons, or actions
mean the same thing

• Users should not have to remember
app-specific navigation

8

iOS and Android platform conventions:
Human Interface Guidelines

9

Human interface guidelines

• Created by web/mobile platform developers (Google, Apple)
• Key features:

• Define rules for visual design and style

• Specify interactions

• Establish layout techniques

• Provide consistency across the platform

10

Human interface guidelines

• HIGs are recommendations; you can choose to ignore them

• The goal is to create an optimal experience for a device or platform

• These guidelines most often follow best practices

11

iOS Human Interface Guidelines

• Content over UI
• Use the whole screen
• Single / simple colors
• Borderless buttons and widgets

12

Navigation
• Should be “natural”
• Use a navigation bar to traverse

a hierarchy of data
• Use a tab bar for several

peer categories
• Use a new page when that page

is an instance of an item
for another page

13

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/navigation/

Modals
• Grab control of the experience

until they are dismissed
• Meant to grab attention

for doing one small, specific task
• Make sure the user can back out
• Respect notification wishes
• Use sparingly

14
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/modality/

Interactivity
• Use a key color to denote interactive

elements
• Denote “active” and “inactive”

components differently
• Be aware of colorblindness

15

Branding
• It’s important to be distinctive…
• But be careful not to pull a user out of

the iOS experience
• Your app does not have to look like a

default app, but…

16

Color and Typography
• Colors are great for grabbing

attention, but can be overused
• Use complementary colors

• Palette definers like paletton.com

• Use a single typeface (font),
if possible

• Built-in fonts are just fine

• Use font size, and color and
weight (bold) to highlight information

17
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/color/

Icons
• A good icon is important
• Keep background simple
• Only use words if they are essential or

part of a logo
• Leave your icon out of the interface
• When appropriate, use

system icons in the interface itself

• Use as intended

18
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/

Google Material Design

• Philosophy: interface should look like layers on a sheet of paper

• Have 3D depth and motion

• Follows many of the same patterns as iOS design in terms of interaction

• Limited use of modals

• Use color to emphasize content

• Be subtle with branding

• But, there are a few key differences

19
https://material.io/design/

Universal navigation bar
• Android has a navigation bar

at the bottom of the screen

• Sometimes it’s a hardware button,
sometimes done in software?

• But it’s always present

• iOS implements “back” in-app

20

iOS Android

https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

In-app navigation
• On top in Android, on bottom in iOS

• Why the difference?

• Android only shows icons
• iOS icons have labels

21

Android

iOS

https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

Swiping
• On Android, swiping

moves the user between tabs
• On iOS, swiping takes

the user back a screen
• Android’s always-present

back button allows this navigation

22
https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

iOSAndroid

App settings
• Android apps usually load settings

from a “hamburger” button
in the top left

• iOS typically have settings
as an item on the navigation bar

23

Android iOS

https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

Uniformity

• There are always exceptions
• Not all apps vary the interaction

and UI design patterns for each platform

24
https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

Uniformity

25
https://medium.com/@vedantha/interaction-design-patterns-ios-vs-android-111055f8a9b7

Android iOS Android iOS

Switching topics: SASS

26

Same page, different stylesheets

2
7

http://www.csszengarden.com/

CSS syntax

• Selectors specify which elements a rule applies to
• Rules specify what values to assign to different formatting properties
/* CSS Pseudocode */
selector {
property: value;
property: value;
...

}

28

One rule, many properties

Writing plain CSS

• Violates the “Don’t Repeat Yourself” principle of coding
• Many times we’re writing the same snippets of code

for frequently used declarations

29

Example: fonts

• What if I want to switch from
Lato to some other font?

• What if I want to make
everything larger?

• I could have structured my CSS
more efficiently, but at the core,
it’s inflexible

• For example, I could have set Lato
to be the default font for cite

cite > .series {
font-family: 'Lato', sans-serif;

}

cite > a {
font-family: 'Lato', sans-serif;
font-size: 0.8em;

}

cite > .authors {
font-family: 'ChaparralPro', serif;
font-size: 1.1em;

}

cite > .title {
font-family: 'Lato', sans-serif;
font-weight: 700;

}

30

CSS preprocessors
• “Let you abstract key

design elements, use logic,
and write less code”

• Three widely used ones:
SASS, Less, Stylus

• They all do pretty much
the same thing

• Angular and Ionic let you choose
a preprocessor or use plain CSS

31

CSS preprocessors

• Variables
• Mixins
• Nesting
• Extensions
• Operators

32

Major features

Variables

• Using variables with CSS
preprocessors makes it easy
to update colors, fonts,
or other values throughout
your entire stylesheet

//Sass Variables

$primary: #CC5533;

$font-base: 12px;

//Less Variables

@primary: #CC5533;

@font-base: 12px;

//Stylus Variables

primary = #CC5533

font-base = 12px

33

Variables

• As of 2016, variables are
supported in plain old CSS

• Many frameworks use these
variables instead of preprocessor
variables

• But preprocessors offer
a lot more functionality

/*Declaring a variable*/
element {

--main-bg-color: brown;
}

/*Using the variable*/
element {

background-color: var(--main-bg-color);
}

34
https://www.caniuse.com/#search=css%20variables

Nesting

• You can nest selectors with
preprocessors

• This means you can easily
organize an entire hierarchy of
selectors, including child
elements

nav {

ul {

margin: 0;

padding: 0;

list-style: none;

}

li { display: inline-block; }

a {

display: block;

padding: 6px 12px;

text-decoration: none;

&:hover {

text-decoration: underline;

}

}

}

35

Extensions

• The @extend property lets you
share styles from one selector
to another

• Use % to define an “abstract”
style

• Can be inherited: can extend one
style which extends another style

%message-shared {

border: 1px solid #ccc;

padding: 10px;

color: #333;

}

.message {

@extend %message-shared;

}

.success {

@extend %message-shared;

border-color: green;

}

.error {

@extend %message-shared;

border-color: red;

}
36

Mixins

• Mixins can produce functions
which apply a set of styles
when given arguments

• Similar to extensions,
except arguments can be passed
and no concept of inheritance

@mixin border-radius($radius) {

-webkit-border-radius: $radius;

-moz-border-radius: $radius;

-ms-border-radius: $radius;

border-radius: $radius;

}

.box { @include border-radius(10px); }

37

Operators

• Like most programming
languages, CSS preprocessors can
do math!

• This is especially great for setting
a fixed value in a variable, like a
font-size or padding, and then
modifying it as you go along

$container = 100%;

article[role="main"] {

float: left;

width: 600px / 960px * $container;

}

38

Digging into SASS

39

SASS

• “SASS is the most mature, stable, and
powerful professional grade CSS
extension language
in the world.”

• “SASS boasts more features
and abilities than any other CSS
extension language out there”

• It’s on their website,
so it must be true!

40

Syntatically Awesome Style Sheets

http://sass-lang.com/

SASS
• File extension: .scss
• SASS is a superset of CSS

• You can write any CSS in a SCSS
document

• SCSS is transpiled to CSS

• Just like TypeScript is transpiled
to JavaScript

41

SCSS Syntax

• Looks very much like regular CSS
• Rules apply to a selector and are

made in brackets
• Each rule ends with a semicolon
• SCSS adds variables, mixins, etc.

$font-stack: Helvetica, sans-serif;

$primary-color: #333;

body {

font: 100% $font-stack;

color: $primary-color;

}

42

SCSS Syntax

$primary-color: #3bbfce;

$margin: 16px;

.content-navigation {

border-color: $primary-color;

color: darken($primary-color, 10%);

}

.border {

padding: $margin / 2;

margin: $margin / 2;

border-color: $primary-color;

}

• There’s another style, called
“sass syntax”, which looks more
like python

• It’s older, uses the .sass extension
• Why is .scss better?

• It’s a superset of CSS,
rather than another syntax

43

.scss .sass

$primary-color: #3bbfce

$margin: 16px

.content-navigation

border-color: $primary-color

color: darken($primary-color, 10%)

.border

padding: $margin/2

margin: $margin/2

border-color: $primary-color

SASS

44

Thoughts on CSS preprocessors

• Preprocessor functionality is slowly getting added to the CSS standard

• CSS now supports variables, for example

• Does this mean that preprocessors will soon be obsolete?

• Maybe. Or maybe they’ll evolve, adding other kinds of new and better features

• Transpiling languages are a great way to show the value of new features

• And if they catch on enough, they get added into the standard

• Who knows, maybe JavaScript will add typing from TypeScript

45

Goals for this lecture

• Follow high-level guidelines for developing mobile interfaces
• Find and interpret platform-specific human interface guidelines
• Differentiate iOS and Android platform guidelines
• Explain why we might use a preprocessor like SASS for CSS
• Use SASS variables, mixins, nesting, and operators to simplify CSS

4
6

By the end of this lecture, you should be able to…

How do I actually use
a CSS preprocessor like SASS?

47

Installing SASS

• npm install -g sass

• This version is written in JavaScript, which is slower

• But it’s fine for the size of projects we’re working with

• choco install sass

• brew install sass/sass/sass

• 3 times to make super duper sure

• (just kidding, it’s how HomeBrew designates projects)

48
https://sass-lang.com/install

Manually transpiling

• You can use SASS with a plain-old HTML page!
• It just needs to be transpiled to CSS before getting loaded

49

Manually transpiling

• Transpile one file:
• sass input.scss output.css

• Watch one file for changes:

• sass —watch input.scss:output.scss

• Watch a whole directory of SASS files:

• sass —watch path/sass-directory

50

Automatic transpiling

• A lot of frameworks will automatically transpile .scss files
when they build and run

• Angular and Ionic can include .scss files for every component and secretly
transpile them to .css

• A preprocessor is specified when the app is first created

51

